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FINAL TECHNICAL REPORT

General Abstract:

Microstructures were studied in the presence of generalized defects,

both point repulsive potentials and slit openings in barriers. A number of

transport effects were discovered. For isolated defects a resonance was

found to occur at the threshold energies of a quantum vell. A scaling

relation was found for scatterers near single barriers. A rich spectrum of

effects was found for single defects near and within double-barrier struc-

tures. The electronic analogue of single slit diffraction was shown to

exhibit high fringe visibilities.

Written presentations of research results:

"Electronic Transport in Microstructures with Defects," (Master's

Thesis of Brent Haukness) - This presents a detailed description of the

methods used, with 62 figures (145 pp.). It is available on microfilm from

University Microfilms Inc., Ann Arbor, Michigan. Abstract:

The effects of elastic point scatterers on the electronic transport

properties of microstructures are examined using a generalized transfer

matrix approach. Using a delta-function potential to model a defect,

transmission characteristics are calculated for a number of different

microstructures. Among these is the double barrier resonant tunneling

diode. A number of effects are noticed. These effects depend sensi-

tively on the position of the defect relative to specific features of

the potential structure, and a saturation of the effects is noticed

with increasing defect strength. Some of the peculiarities of the

delta-function defect, are also examined, and a comparison is made to

defects modeled with a Gaussian potential.

"Analysis of Electron Diffraction in a Novel Field-Effect Transistor,"

by A. M. Kriman, G. H. Bernstein, B. S. Haukness and D. K. Ferry. - This

original paper was published in Superlattices and Microstructures, Vol. 6,

No. 4, pp. 381-386, 1989, and presented as a poster at the 1988 Conference



on Superlattices, Microstructures and Microdevices held in Trieste, Italy.

It provides a theoretical analysis of the behavior of the QUADFET device.

(The work of G. H. Bernstein and D. K. Ferry, and the work of A. M. Kriman

related to this project, were not paid by this contract. The work of

Haukness was.) This paper represents calculations related to the main topic

of geometric effects in scattering in a number of ways: (i) It provided an

"entry level" problem for the student (Baukness) which taught him some of

the skills that he was to need in mastering the main project, such as using

the CONVEX computer with UNIX operating system and with local plotting

facilities. (il) It involved a microstructure in two dimensions with non-

trivial geometry. The situation treated - a long thin barrier with a slit,

Fis in fact a nontrivial microstructure with a defect. The "defect" is a

slit which intentionally built into the barrier. (iii) The mathematical

approach was closely related to that used to solve the general problem

ultimately treated by aaukness. Abstract:

We analyze a field effect transistor whose operation utilizes the

quantum diffraction of electrons by a narrow slit in the gate.

Calculations are performed using a lov-energy conformal mapping tech-

nique which does not assume small-angle scattering. It is shown that

the device will exhibit far-field quantum diffraction similar in ap-

pearance to the Fraunhofer patterns observed in optics. The

diffraction pattern can be detected as current collected at a number of

narrow Schottky contacts which together comprise a "viewing screen".

Fringe visibilities on the order of 0.5 are predicted. A number of

applications of the device are discussed.

"Geometric Effects of Scattering in Microstructures," by A. H. Kriman,

R. P. Joshi, B. S. Haukness and D. K. Ferry. - This original paper will be

published in Solid State Electronics, Vol. 32, No. 12, pp. 1597-1601, 1989,,r

and was presented as a poster at the 1989 Conference on Hot Carriers in

Semiconductors held in Scottsdale, Arizona. Abstract:
0

Transfer Matrix techniques are used to study elastic scattering by

point defects embedded in quasi-one-dimensional microstructures. This

makes possible an exact analysis of phenomena that arise from breaking

alsabillty Coes
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of transverse translation invariance. The dependence of transmission

probability on scatterer position is studied for parallel transport in

quantum vells and for perpendicular transport across single and double

barrier structures. It is found that in laterally confined structures,

delta-function and other extremely sharp models of a single defect lead

to sharp resonances when such defects are vell isolated. Such features

are associated with multiple reflections between the lateral confining

potential and the defect potential. In single-barrier structures with

a single nearby defect, an approximate scaling behavior is found that

relates transmission for defects at different distances to that at a

fixed distance vith different energy scales. In double barrier reson-

ant tunneling diodes (DBRTDs), the position of the transmission peak is

affected primarily by defects within the quantum vell region. The

height of the transmission peak is very sensitive to the positions of

defects within that region, acting essentially as a probe of the

resonance wave function. Defects in front of a DBRTD also affect the

valley current by modifying the longitudinal component of the incident

momentum.

Educational accomplishments:

One graduate student, Brent S. Haukness (a U.S. citizen), was hired for

the year 1988. As a result primarily of the work that he performed under

this contract, he earned a Master's degree in Electrical Engineering. He

had offers to attend graduate school toward his Ph.D., but he preferred to

enter industry; he accepted an offer from, and has been working since

January for Texas Instruments, Inc.

It was not found possible, as envisaged in the original budget, to hire

another graduate student with adequate qualifications to perform work re-

quired under the contract. Instead, Ravindra P. Joshi, who had recently

received his Ph.D. in Electrical Engineering from Arizona State University,

was hired on a part-time basis. (He worked full-time over all, as he also

worked part-time for R. 0. Grondin.) This work constituted post-doctoral

training allowed under his visa, and it did significantly increase the

breadth of his experience beyond what he had learned as a graduate student.
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EFFECTIVE POTENTIAL FOR MOMENT-METHOD SIMULATION OF QUANTUM DEVICES

A. M. Knman, i.-R. Zhou, N. C. Kluksdahl, H. H. Choi, and D. K. Fery

Center for Solid State Electronics Research
Arizona State Univesity, Tempe, Arizona 85287-6206

ABSTRACT

In the simulation of submicron devices, complete quantum descriptions can be extremely comnputationally Intensive, and
reduced descriptions are desirable. One such description utilizes a few low-order moments of die mommturn distribution that
are defined by the Wigner function. Two major difficulties occur in applying this moment method: (I) An independent
calculation is required to find quantum mechanically accurate initial conditions. (ii) For a system in a mixed state, the
hierarchy of time evolution equations for die moments does not close. We describe an approach to solve these problems.
The initial distribution bi determined in equilibrium by means of a new effective potential, chosen for its ability to teat the
sharp potential features which occur in heterostructures. it accurately describes barrier penetration and repulsion, as well as
quantum broadening of the momentum distribution. The moment equation hierarchy Is closed at the level of the second-
moment time evolution equation, using a closure that Is exact for a shifted Fermi distribution. Band-bending Is included by
simultaneous self-consistent determination of al the moments.

KEYWORDS

Submicron device simulation; quantum barrier repulsion and penetration; moment method.

INTRODUCTION

The development of nanometer-scale electronic devices has required the modeling of quantum mechanical effects in device
simulations. A number of such simulations have been developed for the resonant tunneling diode (RTD), whose operation
depends essentially on the purely quantum mechanical effect of barrier tunneling. Because the RTD is a quasi-one-
dimensional device, its analysis is numerically tractable, even when "self-consistency" (electrostatic fields due to mobile
charge redistribution) is included (Kluksdahl eatol., 1989). More general devices, whose active regiom cannot be treated in a

one-dimensional approximation, present a computational challenge.

These computational problem already occur in the simulation of classical (non-quantum mechanical) devices. Classical
devices ae adequately described by the single-particle distribution function which gives the density In the six-dimensional
phase space of momentum and space coordinates. Near equilibrium, the momentum distribution at each point is well
approximated by a shifted equilibrium distribution. This observation leads to the successful and widely used "momnt
method" (Blitekiar, 1966 and 1970). In this approach, instead of determining the full distribution function as a function of
six arguments, one uses a reduced description based on a few momentum integrals - moments of the distribution function -
as functions of spatial position. The moments obey time evolution equations ("moment equations") that are integrals of the
Boltzmann equation.

The quantum mechanical generalization of the classical distribution function is the Wiper distribution function, a partial
Fourier transfonn of die density marix. lafrte, Grubin and Ferry (1981) developed a quantum g nalization of die moment
method, based on integals of the Wigner function. Interestingly, the first three quantum moment equations are formally
Identical to she clOsL e ThuJfalus. umeffects we bo be included in the simulation, then they musaalready be present
in the initil onditios Ibis fact is aso known from simlations based directly an the Wigner functin (Cthers and
Zcllarius, 1983): For motion in a parabolic potential, the full classical and quantum distribution functions obey ien"ticl
equations of motion, so die difference between classical and quantum behaviors must be "contained in the initial distribution,
While this demonstrates that some aspects of die quantuinlassical distinction must be contained in the initial conditions, it is
atevertheless the case that for motion in generd potentials, the classical and quantum evoluin equations also differ.

The moment equMions form a hierarchy, with the time derivative of each moment determined in pen by the gradient of the
mext mmnt dit hierarchy. ia practical calculation, one conpuee only a few sow-order moments, closing the hierarchy
by asking some approxlnus3on for die highea moment used. Such an awpinch is justified by de fact that at equilibrium, the
exact diatribution is completely determined by the density and temperature (the zeroth an recond moments). Away from
equilibrium, he closure approximation corresponds to an assumpdi regarding the form of a quasi-equilibrium distribution.
In our simulations, we use the first three moments (number, momentum, and energy densides). Our o•are is initially
derived by assutning that third momenta are wuda, hut it is exactly true for a iage class of distrbutom functions, Including
the dshW Penml-Dinc diution.

In one-dimensional RTD models, it Is possible so copute a completely self-consistn Wiper distributio function In
equilibrium by performing a thermally weighted sum over all stes. This has provided am Initial distribution which is
accurately stationary under numeuical Integration of the Wiper function time evolution a dtoa. In contrat, a three-
diasuiondl devica has may more m s, anW If its Serfdtag equation is ot seprabl t it is difficult eve o find
indivial ma.es, Ie alone pefom a ca mpIse saw. Anohe method, based on pub t So do asvide a systematic

bpm ocoIt k toos ccpueltonally lteadv , and has s de been spled primarilyP - p'le . 1Se
non dHeu, (1989), Register a al. (1988), md refesnces therein.) What is theefre required Is a conputationally

efficient way of determinin8 an equilibrium (initial) distribution, or set of moments, tha would complement the
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computadonaily efficient moment method. As noted, the moments so determined must manifest quantum mechanical effects:
quantum mechanical cosrections cannot arise independently from the time evolution equations.

Some of die authors (Kiuman, Zhou nd Feny, 1989) have recently proposed a statistical (*effective potential") method. This
provides a quantum mechanically accurate equilibrium distribution which we will use to usdsfy the requirement for accurate
nitial condtions. The effective potential describes banr penetration and repulsion, along with equilibrium broadenin; of

the momentum ditribion which does not occur classically. Other effective potentials, derived rigorously as semiclassical
apprximations of the partition function, cannot be applied in the presence to typical device models. Indeed, these previous
effective potentials diverge everywhere if the potential is infinite in any finite region. The new effective potential is a well-
behaved (unctional the zea potential, and has the roper asymptotic behavior near an infinite potential barrier, giving errors
n densty at the few per cent level. Like previous effective potentials, it also approaches the correct high-temperature limits.
In the following, w ill recapitulate the method and ouine its dervaton.

EFFECTIVE POTENTIAL

We find an initial condition in equilibrium by using a recently developed effective potential method (Kriman, Zhou and Ferry,
1989). This method is similar in form to earlier statistical approximations developed by Giachetti and Togtti (1985; 1986)and by Kleinen (1986) with Feynman (1986). In common with these, the new megthod computes the density classically from
an effective potential which incorporates a local average of the actual potential. The local averlie represents the quantum
position uncertainty of a particle whose energy - and thus momentum - is not completely uncertain. The inforimtion about
the entergy distrbution arises from the finite temperature, and thus the range over which the position must be averaged is of

the order of the thermal wavelength I a A

The main respects in which earlier effective potential methods differ from the one we use here have to do with the effect of
infinite potentials. The Giachetti-Tognetti and Feynran-Kleinen effective potential approaches assume that the underlying

ptential is smooth, and proced from there to derive analytically apprximations which are exact in the high-temperature
l~imt. This Js suqpote~lby the fact that in the high temperature limit, thelowest-order quantum cosrection to the density is of
relative order rQTr)', where V" s the second derivative of the potential (Husimi, 1940). Many of the potentials
commonly used in modeling solid state - and particularly hterostructure - devices, contain potentials that a not smooth.
The extreme case of this is the infinite wall potential, used where appropriate to set the density to zero.

The previous effective potentials all diverge for this potential, as they do for any potential whose integral in any finite region
is infinite. Tiis is because the effective potentials are linear averages of the reMA potential, and the weighting in space falls
smoothly to zero. The new potential method that we have introduced uses nonlinear averages, and remains well-defined in
the presence of infinite barriers.
The nonlinear effective potential is derived in the spirit of density functional theory (DFi) (Jones and Gunnarsson, 1989).
The DFr is based on the fact (Hohenberg and Kohn, 1964; Levy, 1979; Mermin, 1965) that the electron energy is a unique
functional of the electron density. Although the exact functional is unknown and presumably quite complex (Lieb, 1982), it
is possible to develop approximate functionals that are adjusted to be quite accurate for a set of simplified cases (Kohn and
Sham, 1965). Analogously, the nonlinear effective potential is based on the observation that the density is (by construction) a
unique functional of the potential. While the exact foml expression of this functional can be difficult to evaluate, it is again
possible to develop approximate functionals by adjusting parameters in a suitable Ansatz. We have also used certain simple,
exact properties of the density to constrain the form of the effective potential. These constraints were that (a) the effective
potential approach the real one at high temperature, and that the effective potential preserve (b) homogeneity and (c)xwnhiutyp MoPPli of t nre potenia.
The hith-tempertre constraint stm frorn one motivation of effete Iotentials in general: that in the classical regime the

potntalan Kis regm isa %'e at high temperatures. Onedensity is given simply 2 an exponential of the real potential, and that thsrgm a on edthihtpea e.On

simple consequence of is constraint is that various weighting functions must be normalized. Another is that the local
averaging am occur length scales tat dcrease with increasing temperature. By dimensional analysis, for a sharp
potential feature this h rsei must be essntaially the ihhaa wrvemeneth.

The homogenty constraim we Impose is that a constant change in the real potential lead to an equal change in the effective

potential. This is a sur ingy stringent conrint. Fr eample, consier the potential has the general functional form

V9(r) -u t( (h.(V)Xx)()) (I)

whee ha is a function with invers Ibe under composition:

f() 0 it(m(110)). (2)

Her h Is a rel function of a real argument, and nonlocalty is introduced by the average (.Xx). It can be proven that only
two form of h we allowable in (I) under the contraint of homogeneity. These are hL(V) a v, which leads to the ordinary

ithmetic (linar) aveage, and hI(v) a •*tp(-Vv, which leads to the exponential averages dtat we must ultimately use if
ibde poetina as so be aIsb. (Slighly more general hs as allowabl, but lead to the nam averages.)

The sepabillity omumia we is that a poential Is se Ible in Cartesian coordinates, them In effective potential will be
e eTsa s m ipsy fdlows fhimn the fator=zaHlity of the density when the potential is separable. The weak

onditm itposed Is ant ji1CieM o imply diAt separability will be conserved for the other -odi systems in which te
Sdihfdlgur eqution is separable. However, by means of a standard argument from the kinetic theory of gases, It does
fcdHollw tht vra 11sch anthe one appearin in (1) must be defined by a weighting function that is Gaussian. (See, for
e"ample, (Casm,171)
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witNumeiTl parameters in dhe effective potetial were set by optimizin the fit to the density in sem-infinite wall potential.
whose density is known exactly (Kiman, K-ukAeahi. Ferry, 987). The temperature and mass can be scaled out of this
otntial, so he u tresi hre veor generd validty. After requirin that the leading symtotic behvior of the density ner
pthe wall b ie exac hi in itself rul out many functiona fom fh die effective potential) the naxinum fractional

form

(x) "* w(yt/P) V.(x), (3)

0
with

w(s) -w. exp(-aazeas), (4)

we found that wovr.4427. a-14.9442. and 8..265. The weight In the avereh defining V is a assian of rms width2G-.3220]qTH() )tfl. it should be understod that ths four parameters are th meutt of a two-parameter optimization: (i)
The small-x asymptotic behavior of the density (p-z) requires w(0)u(n2)-'. (ii) The high-temperaureclssical-lmi
constraint requires w to be nonmalized, so 6depends on oa in a way that has nothing to do with the model potential chosen for
optimization. The peak in the distribution w occurs when o-0.733.1i. Thus, the effective potential represents an average of

the real eolntlal over a range comparable to the thermal wavelength. (This was expected, but it wu not imposed as an
independent condition.)

We used this effective potential to compute the density in equilibrium of a resonant tunneling diode. The diode consists of
0.3eV barriers, Snm long, separated by a quantum well region Snm long. The electron is assumed to have the a mass 0.067
times the free lectro mass, appropriate for GaAs. In Fig. I the result of the effective potential calculation is compared with
the exact numerical result (Kluksdal, et al., 1989). computed by sununint over scattennt eiRenstates.

1.2-

l0

0.8

0.6J0.4
0.2

0.0
0 20 40 60

Position In n
Fig. 1. Electron density from exact approach (sum over scattering states, full line)

and effective potential (broken line).

MOME METHOD

A reduced description of semiconductor systems that has been successful for classical problem is ithe moment method
(BlItekjar, 1966 and 1970). In quantum problems, th analogue of the distribution funcuon. which provides a "complete"
single-particle description is the Wigner distribution function (Brittin and Chappell. (1962); Cauthers and Zachanason,
( 1983); Balazs and Jennings. (1984); Hillery, et al. (1984)). It is a Fourier transform of the density matrix p(x.x') a

9v(#)y)) (Vt andy am field oae s, taken with respect to the difference coordinate:

fW(x'Peu - f eipyl5 p(x+j-j) . (5)

The Wigner distribution function fw s the Weyl transform of the classical single pricle phase space density. That is, it is a
particular quantum generalization of the phase space density. It Is a real functio, and one can Immediately define local
momtm o the momentum distribution by



p.OW _ Jdp fw(xp.i) p" (6)

related to local averages of tde momentum and its powers by

( Pf) - ILWP, (7)
where p ato. It is possible to derive, from the exact quantum mechanical equation of motion of the Wigner function, a set of
ioment equations analogous to the moment equations of classical semiconductor problems (lafrate, Grubin and Ferry,

1981). The first three moments evolve in time according to

+t' + a VWO

-P2 P -- (F),(8)

2+ ;W aX P + 2P 1) ;= . 9

where the inhomogeneous terms on the right contain the effects of collisions. One may reasonably expect that for a good
approximation of a statistical system's behavior, it would suffice to evolve just the first three elements, corresponding to
density, momentum, and energy. However, as noted earlier, closing the hierarchy at any finite order requires some extra
information, typically in the form of an expression, using lower-order moments, of the highest-order moment appearing in
the equations. In particular, the last of our moment equations involves the gradient of Pil, for which no time evolution
equation is given. One way of "closing" the moment equations is to make some approximation within the derivation of the
moment equations in hS implicit approach, a sepate closure expression may not occur, and the approximation is built into
the time evolution equations, which are also usually referred to as ("the") moment equations. To remove any ambiguity, let
us state that where we refer, in this paper, to the formal equivalence between the first three classical and quantum moment
equations, we are eerring specificallyto (8). the moment equations derived without any hierarchy-closing Ansatz

In the special case of a pure state, the "statistical" system Is described completely by two real quantities: V - Re(y) +
ltm(y). Thus one expects that it should be possible to close the moment equations at the level of the two moments. In fact,
lafrate and coworkers (1981) have shown that for a pure state.

2
ILI *2 a2

P~2 T - - x y 11p.-

The second term is (up to a multiplicative factor) the "quantum potential" of Bohm, and using this closure in the first two
equations of the hierarchy (8) yields the same moments as a direct solution of the Schroldinger equation.
For the general (mixed state) case. we first derive our closure expression by regarding the skewness of the momentum
distribution as small We write

p - (p) + 8,

and find that (82) -
(p2 ) - ()2, and of course () - 0. If we make the assumption of approximately Gaussian distributions.

or some other weaker assumption which causes the skewness (63) so vanish, then we can conclude that

p)-3,p2 ) - 2(p)3 . (9)

This closure rule has a very useful property: It is easily demonstrated that a large class of distributions, including the
common drifted Maxwelltan and drifted Fermi distributions. satisfy this relation. In general, it holds for any distribution of
the foarm f(xxp) -

It is Important to noe that while the form of our closure is ((p4))3 ) a 0 in the classical case, different closures arise when
sitmilar-appearing approximations ae made In different conlexts In particular, Plos aczk and Rhoades-.rown (1985) and
Str-sci (1986) use an Implicit closure that Is essentially equivalent to setting ((p4-())-) m ((p-(p))4) w 0 and solving the
moment equation forp (the lowe-order equation not shown in (8)1. c closure obtained in this way does contain a
quantum cono. Hower there as in most perturbative aproec ing order ofI are associa with increasing
orders of derivatives of the potenial making It inappropriat for the problems we wish to amt

SUMMARY

We have propod an a P-c to e mome meod, for quntum devices, using an effective potential-based density which
Is designed to mimic Im features ofthe e density, snch as tunneling, barrer penetration, and me complementary
brireplsn. The oe of potntl funtol is guided by the requirement to satisfy a number of funamental
constraints. We describe an explict clsure for the moment equations at the level of the kinetic energy time evolution
eqmton whi Is at edA eactly by all dAied" distr6itions.

Th ws was spposed b, pat by the Anny Raaue Office.
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ANALYSIS OF ELECTRON DIFFRACTION IN A NOVEL FIELD-EFFECT
TRANSISTOR
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University of Notre Dame

Notre Dame, IN 46556

(Received August 18, 1988)
(Revision received June 12, 1989)

We analyze a field effect transistor whose operation utilizes the quantum diffraction of electrons by a narrow slit in
the gate. Calculations are performed using a low-energy conformal mapping technique which does not assume
small-angle scattering. It is shown that the device will exhibit far-field quantum diffraction similar in appearance to
the Fraunhofer patterns observed in optics. The diffraction pattern can be detected as current collected at a number
of narrow Schottky contacts which together comprise a "viewing screen". Fringe visibilities on the order of 0.5 are
predicted. A number of applications of the device are discussed.

1. Introduction number around the flux enclosed by the ring. In the device

Refinements in nanolithography and epitaxial growth proposed by Furuya, diffraction is effected by a transverse
techniques have made possible devices with progressively potential grating in the base, and the paths are distinguished
smaller features, allowing the observation of real-space wave by the opening of the base through which they cross.
properties of electrons in the solid state. Paradigmatic We describe a device which differs from existing devices
examples of these are resonant tunneling diodes [11 and in both of the above-described respects. This "QUADFET"
small ring structures [2] exhibiting Aharonov-Bohm effects (Qantum Diffraction EFL) [6] is essentially a single-slit
[31. The signature of the wave mechanical effects is diffraction experiment realized within the two-dimensional
typically some non-monotonic feature in a plot of current electron gas of an inverted HEMT layer. The analog of the
versus electric or magnetic field. Such features arise as the viewing screen is a set of forward-biased Schottky contacts,
interference between different electron paths alternates or "collectors", which serve as the drain (see Fig. 1). The
between predominantly constructive and predominantly slit width can be varied by adjusting the gate potential, and
destructive, lobes of the diffraction pattern are detected as variations in

In at least two respects, the devices that have been made the current reaching different collectors.
or suggested thus far generally test only special cases of It is important to consider the survival of the diffraction
interference phenomena. First, with only one exception that pattern in the presence of collisions. Beenakker et al. [7]
we are aware of (Furuya [4]), there have been no diff-action performed elegant experiments which show that elastic
devices, such as gratings or slits, in which "bright" and collisions can be ignored over path lengths of at least 3 gim.
"dark" regions may be observed simultaneously. While Their results demonstrated not only that the phase memory
electron diffraction has been demonstrated and utilized [51 of the electrons was conserved, but also that the elastic
for measurement, the diffraction pattern is generally detected collisions did not cause the paths to deviate significantly. If
a macroscopic distance from the diffracting structure, rather elastic collisions did cause significant deviation of the path,
than within the microscopic region that produces it. then the Fraunhofer diffraction pattern in the QUADFET

Second, the interference is usually between quantum would be washed out by thL. collisions within an elastic mean
paths which differ in some discrete way, as in an Aharonov- free path length.
Bohm ring, rather than among a continuous range of paths, This paper is concerned primarily with how the
as in single-slit diffraction. In a path integral view, for QUADFET would work in the absence of scattering. A
instance, the resonant tunneling diode operates by the more central problem is whether the device can be made to
interference between paths differing in the number of times work given the fundamental differences between the usual
they traverse the quantum well. In the Aharonov-Bohm optical diffraction experiment and the electronic device we
rings, the interfering paths differ discretely in their winding have proposed.

0749-4036/89/080381 + 06 $02.00/0 © 1989 Academic Press Limited
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GATE Tlk(Xy) sin(kx) exp(ikyy) 1(-x) + k, (3)

SOURCE

where @(u) = I 1 if u > 0, 0 if u < 0 ) is the unit stepfunction, and

Zk(X,) = kA-fdq, F(qyky;E) exp(iq.Ixx+iqy). (4)

(The integration, hem and wherever explicit bounds are not
given, is over the whole real line.) This eigenstate describes
an electron incident with wave vector k = (ks, k,) (where k.

C~ttictOUs > 0). The sine term in (3) is the standing wave that arises if
Fig. 1. Top view of the QUADFET. there is perfect .specular reflection at x = 0. The difference

between this and the exact wavefunction is Y-, which
contains components scattered into final wave vectors q =

The first difference is in the source: it is difficult to (q., qy). Because our chosen potential (2) reflects
monochromate and focus electrons in a semiconductor specularly almost everywhere, the correction 4. goes to
device, whereas optical devices benefit from readily available zero quickly with increasing distance from the slit, and F is a
laser sources shining through transparent, nondispersive smooth function of q . For a permeable (Vo(y) < -*) or
media. While some monochromation is possible by the rough gate potentia, F would have a component
interposition of a gate, in the manner of the THETA device proportional to 8(qy -ky), implying finite probabilities for
[8], this brings into play the constraint of statistics. Because transmission and nonspecular reflection.
electrons are fegmions, their density in phase space is The electron generally is scattered with transverse wave
bounded (by 2/h on a coarse grain). Thus, focussing and vectors taking the full range of values -- <* y < -. The
monochromation diminish the current, so it is useful to total energy E =A1 2k212m is conserved (k a IklI), so q2 = k2 ,
design a device which functions well with an unfiltered which makes q. an implicit double-valued function of qy for
source distribution, a given energy. The sign of qxmust be chosen to satisfy the

It is clear, therefore, that we must deal with a spatially scattering boundary conditions: 1:k should have waves
extended source having a distribution of energies. These propagating away from the gate (qx > 0 when lqyl < k), or
give rise to space- and time-domain "coherence" effects exponentially damped away from the slit (-iq, > 0 when Iq,1
which have been studied in ordinary light optics [9,10]. In > k). Note that although they do not contribute to the
the specific examples that are usually considered, however, current, these exponentially damped waves are an essential
some kind of small-angle approximation is usually made. part of the state, and contribute to the density near the gate.
Without some such approximation, the usual Huygens- (By reflection symmetry, the right-incident states have an
Fresnel-Kirchoff approach becomes complicated, expression similar to Eq. (3).)
Therefore, in analyzing the QUADFET we have developed a The scattering state (3) is completely specified by F. An
new approach related to those used in waveguide analysis. earlier study [121 concerned with idealized contacts treated a

geometrically similar problem. Generalizing the method
2. Device Model and Diffraction Amplitudes developed there (see in particular the case treated in the

Appendix), one can write down an implicit solution for a
Our central problem is to give an adequate treatment of potential of the general form (1): F is that function which

the quantum states in the vicinity of the slit. Initially, satisfies
therefore, we solve the Schr6dinger equation for a potential
that consists of a single slit gate lying along the y axis:

V X,y) = Yoy) 8W, (1) Jdqy F(q,,;E) (q. + Vo(y)) exp[i%-q,,)y] = 1 (5)

(x is the coordinate perpendicular to the gate, within the for all y.two-dimensional electron gas), where we consider the fralvspecial case In the earlier study, it was found that the dominantbehavior of transmission amplitudes (to q from k ) arose
from the k, factor in (4), while the energy-dependence of F

VOW for lyl (2) was a higher-order effect. In order to keep the problem
1o for lyl a/2 tractable, therefore, we have assumed

The gate is assumed, like the corresponding optical barrier,
to be infinitesimally thin (i.e., c, S(x)). This is justified if F(qy,ky;E) a F(qy,ky;O) a F(qy,ky) . (6)
the Fermi wavelength is long compared to the actual gate
length. The baruier "strength" Vo(y) is nonnegative, so there This approximation is completely analogous to one made
are no bound states. Thus, a basis of eigenstates for this in calculations of microwave waveguide characteristics 113]
potential consists of scattering states incident from the right and of fluid flow around obstacles and through constrictions
and left. Completely general momentum-normalized (Il1 [ 141. The computational advantage of this approach is the
left-incident states can be written (using continuity of the possibility of applying conformal mapping techniques, as we
wavefunction at x = 0) in the form [ 12 shall do. We apply a mapping into elliptic coordinates

a'.
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g + i a w = cosh-I(2iz/a), (7) the dimensions of the drain region in Fig. 1 so as to fulfill
two complementary conditions: on the one hand, the

with z = x + iy. collectors are close enough that a large fraction of the
The infinite barriers of the gate now coincide with 4=0 (x electrons travel ballistically from slit gate to drain. On the

= , y < -a/2) and t = it (x = 0, y > a/2). We can now other hand, they are far enough away that a Fraunhofer
implement the potential simply as a Neumann (TI = 0) diffraction pattern is detected. This can be achieved by
boundary condition, and we can expand Ek in the complete, placing the tips of the collectors one micron from the slit.
discrete basis of separated states that results: With a 100 nm pitch, collectors at this distance would yield

an angular resolution of about 6 degrees.
In order to observe diffraction effects, the slit width must

-(+ sin(nt) e- "A, (8) be comparable to the electron de Broglie wavelength. This
, CRin turn requires a treatment of the states that is based directly

on the Schrdinger equation (Section 2). Having placed the
where tcollectors in the Fraunhofer regime of distances from the slit,

for < < x(x 0),andc.(however, we assure that the potential, which depends on the
for 0 < <t (x > 0), and c~(-) for t < 4 < 2t (x < 0). source-drain bias VDS, varies with a characteristic lengthThese expansion coefficients are implicitly functions of kt = scale much longer than the wavelength. This allows us to
(ik/, /); and can be determined by continuity conditions at
the slit (the locus x = 0, Iy I < a/2 is just gi = 0). Continuity retain one simplifying assumption of the usual semiclassical
of the wavefunction immediately implies c,(+) = cn(-) c. approach to electronic transport: it is possible to neglect the
Derivative continuity takes the form field in the computation of the eigenstates. That is, we can

use the states of the previous section. In this regime, the
dependence of the current on VDs arises from variation of the

T( =0 T~g-0+2-' state occupation probabilities.
We can assign an occupation probability to the scattering

Inserting (3), we find states (3) by observing that their incident current density is
the same as that of normalized momentum eigenstates far
from the slit [11]. Furthermore, we observe that in

c= ni J.(kya/2), (9) equilibrium (zero bias) there is no net current, since the
It current transmitted through the slit from scattering states

incident from the source at any energy is exactly
where J, is the nth-order Bessel function of the first kind compensated by a deficit of reflected current associated with
[15]. By identifying (4) and (8), and taking Fourier degenerate scattering states incident from the drain. The net
components, we find that current density in the drain region therefore depends only on

the excess occupation probability in the drain:

F(q,,k,) Yn= ~ j(a2).a2.(0) (qy-7 (-l ( )J ).(10)j() fdk n(k)j(O;k). (12)
0

We will be concerned with diffraction patterns in the
4 Fraunhofer regime: current will be collected many Here j(6)dO is that part of the total transmitted current which

wavelengths away from the slit. As noted earlier, F is a is ejected into the range of angles (0, 0+d9). The current
smooth function of q1, so we can use a stationary phase density associated with incident wave vector k,
analysis of (4) in this regime to find that the wavefunction is
asymptotically j(0;k) = 1_A cos20 k 2 k2 IF(ksin8,ky)l 2 , (13)

itm
'lk(x=rcos0,y=rsin)~ (11) is computed from (11). With a forward bias of VDS, the

k(-_-) F(ksinOky) cos0 exp[i(kr-)] differential occupation probability is

in polar coordinates; the expression is valid at large 8n(k) = n(E(k)--eVs) - n(E(k)) . (14)
distances. More precisely, it is valid whenever Ikr cosO
is much smaller than the q, -scale for variations in F(qy, k ) with
about q, = ksin9 . Therefore, we make no small-angle
approximation, either in our far-field analysis, based on 2n(E) = lTexp(E-F)
(I1), or in our solutio- of the Schr~dinger equation for the n
scattering states (3).

We have evaluated (12) numerically. Figure 2 shows the
3. Device Characteristics result for a slit width of 250 nm, an electron density n = 3 x

10 11 cm-2, and VDS = 0.1 mV. Lobes, characteristic of
As discussed in section 1, ballistic paths on the order of diffraction, can be seen clearly.

3 microns have been obtained in GaAs/AIGaAs HEMTs at The distribution (14) has a width of roughly eVDs + kT
low temperatures. This is considerably longer than the in energy. For a density of 3 x 10t cm- 2 in n-GaAs, EF =
wavelength of a I meV electron, and also longer than the I I meV, compared to kT = 0.36 meV (at 4.2K). The
minimum feature sizes achievable by electron beam electron distribution can therefore be made approximately
lithography [161. Because of this, it is possible to choose monochromatic if the bias is kept in the few-millivolt range,

r .. - -I
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104_ Another source of incoherence is the spatial extent of the
source. A common measure of coherence (appropriate for

C9 5  quasi-monochromatic sources) is Michelson's fringe
visibility V [10]. This is defined in terms of the intensities
of an adjacent pair of extrema in the diffraction pattern as

" Jmax+Jmin•< 10

'1(l The most commonly studied example of spatial
r coherence effects considers a double slit experiment, where
-. t t  the canonical result is Lhat V depends on a quantity ealx,

Z0t where 0 is the angle subtended by the source as viewed from
the diffracting slit, and equals it for the device shown in Fig.

0 15 30 45 60 75 9) 1. Diffraction fringes are clearly discernible only when ¢#afl
Angle (degrees) is small: V = Isincitoa/X)l (sinc(x) a sin(x)/x). Applying

Fig. 2. Angular current density j(O) for a slit width of 250 this classical result to our situation, for n = 3x10I cm-7( F
nm. an electron density n = 3 x 1011 cm- 2, and = 46 nm) and a = 250 nm, we find V < 0.02. In fact, this
VDS = 0.1 MV. criterion is rather conservative, because it is derived in the

paraxial approximation of small 0 and relatively large a/X.
This allows one to ignore the disclination factor in
Kirchoffs rigorous formulation of the Huygens-Fresnel
theory, and to neglect the reduced apparent size of the slit as
viewed from an oblique source. The effect of these

I) ,.neglected factors is to reduce the contribution of electron
waves incident at wide angles, and effectively focus the

W -incident waves into a source distribution with smaller
W. effective extent 0.

7 10 For the present small a/. situation, jmax varies rapidly
,9. from one peak to the next, so V is ambiguously defined.

For a conservative estimate, we compare the current density
of each minimum with that at the subsequent maximum (i.e.,
the lower of the two adjacent peaks). In Fig. 4 we plot the

J . .. resulting fringe visibilities for the lobes of Fig. 2, and find a
0 5 30 45 60 75 90 fairly high value of V - 0.5. It is unclear at present to what

Angle (degrees) extent these higher values of V are due to our basic
approximation (6). However, it seems likely that the

Fig. 3. Current density j(0) for a slit width of 150 nm and classical value 0.02 may be regarded as a lower bound.
electron density n = 3 x 1011 cm-2 , for biases
VDS of (a) 3.16 mV, (b) 1.0 mV, (c) 0.316 mV and 4. Device Applications
(d) 0.1 mV.

The QUADFET has interesting device applications. Two
of these are based on the way the diffraction pattern varies
with gate bias. As gate bias is increased, and slit widthand for VDS in this range, the temperature dependence due decreases, the diffraction pattern (Fig. 5) and its lobes (Fig.to the width of (14) is negligible (our calculations are 6) shift outward to larger angles. Viewed at a particularperformed at T d c OK). Thus, obtainng high temporal collector, this leads to oscillations in the current, as differentcoherence is not difficult. Curves in Fig. 3, plotted for lobes cross the collector's angular position. Thisdifferent values of the bias, show that for VDS less than

about I mV, t& current dc.- ity is essentially proportional to
bias. At the highest bias, the diffraction lobes are shifted
toward smaller angles. This is due to the shorter wavelength
of electrons injected at high bias. (Calculations in 1.0
subsequent figures were performed using VDS = 0.1 mV.) 0.9

The above suggests that there is only a weak dependence O.X
on temperature below about 40K. In the real device, ' 0.7-
scattering will broaden any sharp features that (12) may _ 0.6 -
exhibit. Nevertheless, studies using hot electron injectors o.5
with variable injection energy (81 display a pattern that : ).4

simplifies our analysis: over short distances, the scattered T
(non-ballistic) component of the electron distribution quickly 0.2
assumes a broad distribution of energies, initially very flat (.2
over the whole range of energies from zero up to the energy (0.1

of the ballistic electrons. This kind of scattered component (0.0
gives rise to a smooth, featureless background, above which 0 1 2 3 4 5
the diffraction pattern due to ballistic electrons should be Lobe Number

observable. Fig. 4. Fringe visibilities V for the 250 nm slit.

-p" tlm mB .
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10 be selected by filtering. Since the device is ballistic and can

operate at high frequencies, multiplied frequencies can range
into the terahertz under proper conditions of bias, density10 and angle.

E, WIn addition, collectors can be chosen which are turned on
:S or off in complementary response to the input voltage,10 allowing the formation of a low-power gate.

Complementary logic may thus be implemented with
Q 10 -- QUADFETs in place of the MOSFETs used in CMOS.

Possible advantages are a reduced number of fabrication
steps and the inherent high speed of ballistic transport.

Furthermore, QUADFETs may be used as magnetic field
sensors. A magnetic field applied perpendicular to the plane

0 15 30 45 60 75 90 of the device curves the electron trajectories, shifting and
Angle (degrees) deforming the current pattern detected at the drain collectors.

Fig. 5. Current densities for slit widths of (a) 250 nm, (b)
200 nm, (c) 150 nm and (d) 100 nm, for the density S. Summaryand bias conditions of Fig. 1. We have described the analysis of a novel field effect

transistor, whose operating principle is the quantum
60 diffraction of electrons. Appreciable fringe visibilities can be

obtained even in the presence of low source coherence. The
50- *useful property of oscillatory transconductance was

* demonstrated theoretically. This property leads to a number
40 of useful device applications.
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